Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 20(6): 925-934, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37142767

RESUMO

The fluorescent glutamate indicator iGluSnFR enables imaging of neurotransmission with genetic and molecular specificity. However, existing iGluSnFR variants exhibit low in vivo signal-to-noise ratios, saturating activation kinetics and exclusion from postsynaptic densities. Using a multiassay screen in bacteria, soluble protein and cultured neurons, we generated variants with improved signal-to-noise ratios and kinetics. We developed surface display constructs that improve iGluSnFR's nanoscopic localization to postsynapses. The resulting indicator iGluSnFR3 exhibits rapid nonsaturating activation kinetics and reports synaptic glutamate release with decreased saturation and increased specificity versus extrasynaptic signals in cultured neurons. Simultaneous imaging and electrophysiology at individual boutons in mouse visual cortex showed that iGluSnFR3 transients report single action potentials with high specificity. In vibrissal sensory cortex layer 4, we used iGluSnFR3 to characterize distinct patterns of touch-evoked feedforward input from thalamocortical boutons and both feedforward and recurrent input onto L4 cortical neuron dendritic spines.


Assuntos
Ácido Glutâmico , Transmissão Sináptica , Camundongos , Animais , Ácido Glutâmico/metabolismo , Cinética , Neurônios/fisiologia , Sinapses/fisiologia
2.
Semin Cell Dev Biol ; 139: 24-34, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35337739

RESUMO

One of the hallmarks of Alzheimer's disease (AD) is structural cell damage and neuronal death in the brains of affected individuals. As these changes are irreversible, it is important to understand their origins and precursors in order to develop treatment strategies against AD. Here, we review evidence for AD-specific impairments of glutamatergic synaptic transmission by relating evidence from human AD subjects to functional studies in animal models of AD. The emerging picture is that early in the disease, the accumulation of toxic ß-amyloid aggregates, particularly dimers and low molecular weight oligomers, disrupts glutamate reuptake, which leads to its extracellular accumulation causing neuronal depolarization. This drives the hyperactivation of neurons and might facilitate neuronal damage and degeneration through glutamate neurotoxicity.


Assuntos
Doença de Alzheimer , Animais , Humanos , Doença de Alzheimer/metabolismo , Transmissão Sináptica/fisiologia , Peptídeos beta-Amiloides/metabolismo , Neurônios/metabolismo , Ácido Glutâmico/metabolismo , Sinapses/metabolismo
3.
Neuron ; 110(23): 4000-4014.e6, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36272414

RESUMO

The hippocampal CA2 region plays a key role in social memory. The encoding of such memory involves afferent activity from the hypothalamic supramammillary nucleus (SuM) to CA2. However, the neuronal circuits required for consolidation of freshly encoded social memory remain unknown. Here, we used circuit-specific optical and single-cell electrophysiological recordings in mice to explore the role of sleep in social memory consolidation and its underlying circuit mechanism. We found that SuM neurons projecting to CA2 were highly active during rapid-eye-movement (REM) sleep but not during non-REM sleep or quiet wakefulness. REM-sleep-selective optogenetic silencing of these neurons impaired social memory. By contrast, the silencing of another group of REM sleep-active SuM neurons that projects to the dentate gyrus had no effect on social memory. Therefore, we provide causal evidence that the REM sleep-active hypothalamic neurons that project to CA2 are specifically required for the consolidation of social memory.


Assuntos
Consolidação da Memória , Animais , Camundongos , Sono
4.
STAR Protoc ; 2(4): 100877, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34816125

RESUMO

Glutamatergic neurotransmission is a widespread form of synaptic excitation in the mammalian brain. The development of genetically encoded fluorescent glutamate sensors allows monitoring synaptic signaling in living brain tissue in real time. Here, we describe single- and two-photon imaging of synaptically evoked glutamatergic population signals in acute hippocampal slices expressing the fluorescent glutamate sensor SF-iGluSnFR.A184S in CA1 or CA3 pyramidal neurons. The protocol can be readily used to study defective synaptic glutamate signaling in mouse models of neuropsychiatric disorders, such as Alzheimer disease. For complete details on the use and execution of this protocol, please refer to Zott et al. (2019).


Assuntos
Ácido Glutâmico/metabolismo , Hipocampo , Imagem Óptica/métodos , Sinapses/fisiologia , Animais , Feminino , Corantes Fluorescentes/química , Hipocampo/química , Hipocampo/citologia , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Masculino , Camundongos , Imagem Molecular , Células Piramidais/química , Células Piramidais/metabolismo , Transmissão Sináptica/fisiologia
5.
Nat Neurosci ; 24(12): 1686-1698, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34782794

RESUMO

Memory persistence is a fundamental cognitive process for guiding behaviors and is considered to rely mostly on neuronal and synaptic plasticity. Whether and how astrocytes contribute to memory persistence is largely unknown. Here, by using two-photon Ca2+ imaging in head-fixed mice and fiber photometry in freely moving mice, we show that aversive sensory stimulation activates α7-nicotinic acetylcholine receptors (nAChRs) in a subpopulation of astrocytes in the auditory cortex. We demonstrate that fear learning causes the de novo induction of sound-evoked Ca2+ transients in these astrocytes. The astrocytic responsiveness persisted over days along with fear memory and disappeared in animals that underwent extinction of learned freezing behavior. Conditional genetic deletion of α7-nAChRs in astrocytes significantly impaired fear memory persistence. We conclude that learning-acquired, α7-nAChR-dependent astrocytic responsiveness is an integral part of the cellular substrate underlying memory persistence.


Assuntos
Astrócitos , Medo , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Astrócitos/metabolismo , Aprendizagem , Camundongos , Transmissão Sináptica , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
6.
Comput Struct Biotechnol J ; 19: 2477-2485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025938

RESUMO

Gene manipulation is a useful approach for understanding functions of genes and is important for investigating basic mechanisms of brain function on the level of single neurons and circuits. Despite the development and the wide range of applications of CRISPR-Cas9 and base editors (BEs), their implementation for an analysis of individual neurons in vivo remained limited. In fact, conventional gene manipulations are generally achieved only on the population level. Here, we combined either CRISPR-Cas9 or BEs with the targeted single-cell electroporation technique as a proof-of-concept test for gene manipulation in single neurons in vivo. Our assay consisted of CRISPR-Cas9- or BEs-induced gene knockout in single Purkinje cells in the cerebellum. Our results demonstrate the feasibility of both gene editing and base editing in single cells in the intact brain, providing a tool through which molecular perturbations of individual neurons can be used for analysis of circuits and, ultimately, behaviors.

7.
Cell Calcium ; 96: 102372, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33640627

RESUMO

Orai1 channels were reported as critical contributors to the Ca2+ signal in hippocampal neurons underlying synaptic plasticity associated with learning and memory. We discuss the results in view of conflicting other reports that stressed the roles of Orai2 channels but failed to detect functions of Orai1 channels in these neurons.


Assuntos
Espinhas Dendríticas , Ácido Glutâmico , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal , Proteína ORAI1/metabolismo
8.
Nat Commun ; 11(1): 4361, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32868773

RESUMO

The sensory responses of cortical neuronal populations following training have been extensively studied. However, the spike firing properties of individual cortical neurons following training remain unknown. Here, we have combined two-photon Ca2+ imaging and single-cell electrophysiology in awake behaving mice following auditory associative training. We find a sparse set (~5%) of layer 2/3 neurons in the primary auditory cortex, each of which reliably exhibits high-rate prolonged burst firing responses to the trained sound. Such bursts are largely absent in the auditory cortex of untrained mice. Strikingly, in mice trained with different multitone chords, we discover distinct subsets of neurons that exhibit bursting responses specifically to a chord but neither to any constituent tone nor to the other chord. Thus, our results demonstrate an integrated representation of learned complex sounds in a small subset of cortical neurons.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Neurônios/fisiologia , Estimulação Acústica/métodos , Córtex Auditivo/citologia , Sinalização do Cálcio , Eletrofisiologia/métodos , Aprendizagem/fisiologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neurônios/metabolismo , Análise de Célula Única/métodos
9.
Light Sci Appl ; 8: 109, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798848

RESUMO

Two-photon laser scanning microscopy has been extensively applied to study in vivo neuronal activity at cellular and subcellular resolutions in mammalian brains. However, the extent of such studies is typically confined to a single functional region of the brain. Here, we demonstrate a novel technique, termed the multiarea two-photon real-time in vivo explorer (MATRIEX), that allows the user to target multiple functional brain regions distributed within a zone of up to 12 mm in diameter, each with a field of view (FOV) of ~200 µm in diameter, thus performing two-photon Ca2+ imaging with single-cell resolution in all of the regions simultaneously. For example, we demonstrate real-time functional imaging of single-neuron activities in the primary visual cortex, primary motor cortex and hippocampal CA1 region of mice in both anesthetized and awake states. A unique advantage of the MATRIEX technique is the configuration of multiple microscopic FOVs that are distributed in three-dimensional space over macroscopic distances (>1 mm) both laterally and axially but that are imaged by a single conventional laser scanning device. In particular, the MATRIEX technique can be effectively implemented as an add-on optical module for an existing conventional single-beam-scanning two-photon microscope without requiring any modification to the microscope itself. Thus, the MATRIEX technique can be readily applied to substantially facilitate the exploration of multiarea neuronal activity in vivo for studies of brain-wide neural circuit function with single-cell resolution.

10.
Nat Neurosci ; 22(10): 1731-1742, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31501572

RESUMO

Mitochondria vary in morphology and function in different tissues; however, little is known about their molecular diversity among cell types. Here we engineered MitoTag mice, which express a Cre recombinase-dependent green fluorescent protein targeted to the outer mitochondrial membrane, and developed an isolation approach to profile tagged mitochondria from defined cell types. We determined the mitochondrial proteome of the three major cerebellar cell types (Purkinje cells, granule cells and astrocytes) and identified hundreds of mitochondrial proteins that are differentially regulated. Thus, we provide markers of cell-type-specific mitochondria for the healthy and diseased mouse and human central nervous systems, including in amyotrophic lateral sclerosis and Alzheimer's disease. Based on proteomic predictions, we demonstrate that astrocytic mitochondria metabolize long-chain fatty acids more efficiently than neuronal mitochondria. We also characterize cell-type differences in mitochondrial calcium buffering via the mitochondrial calcium uniporter (Mcu) and identify regulator of microtubule dynamics protein 3 (Rmdn3) as a determinant of endoplasmic reticulum-mitochondria proximity in Purkinje cells. Our approach enables exploring mitochondrial diversity in many in vivo contexts.


Assuntos
Encéfalo/citologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Esclerose Amiotrófica Lateral/metabolismo , Esclerose Amiotrófica Lateral/patologia , Animais , Astrócitos/metabolismo , Sinalização do Cálcio/genética , Sinalização do Cálcio/fisiologia , Células Cultivadas , Cerebelo/citologia , Ácidos Graxos/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Membranas Mitocondriais/metabolismo , Proteômica , Células de Purkinje/metabolismo
11.
Science ; 365(6453): 559-565, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31395777

RESUMO

ß-amyloid (Aß)-dependent neuronal hyperactivity is believed to contribute to the circuit dysfunction that characterizes the early stages of Alzheimer's disease (AD). Although experimental evidence in support of this hypothesis continues to accrue, the underlying pathological mechanisms are not well understood. In this experiment, we used mouse models of Aß-amyloidosis to show that hyperactivation is initiated by the suppression of glutamate reuptake. Hyperactivity occurred in neurons with preexisting baseline activity, whereas inactive neurons were generally resistant to Aß-mediated hyperactivation. Aß-containing AD brain extracts and purified Aß dimers were able to sustain this vicious cycle. Our findings suggest a cellular mechanism of Aß-dependent neuronal dysfunction that can be active before plaque formation.


Assuntos
Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Região CA1 Hipocampal/fisiopatologia , Neurônios/fisiologia , Placa Amiloide/metabolismo , Peptídeos beta-Amiloides/química , Animais , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Humanos , Potenciação de Longa Duração , Camundongos , Multimerização Proteica
12.
Nat Commun ; 10(1): 3223, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324793

RESUMO

It is widely assumed that inositol trisphosphate (IP3) and ryanodine (Ry) receptors share the same Ca2+ pool in central mammalian neurons. We now demonstrate that in hippocampal CA1 pyramidal neurons IP3- and Ry-receptors are associated with two functionally distinct intracellular Ca2+ stores, respectively. While the IP3-sensitive Ca2+ store refilling requires Orai2 channels, Ry-sensitive Ca2+ store refilling involves voltage-gated Ca2+ channels (VGCCs). Our findings have direct implications for the understanding of function and plasticity in these central mammalian neurons.


Assuntos
Cálcio/metabolismo , Hipocampo/metabolismo , Proteína ORAI2/metabolismo , Células Piramidais/metabolismo , Animais , Canais de Cálcio , Regulação da Expressão Gênica , Fosfatos de Inositol/metabolismo , Íons , Camundongos , Camundongos Knockout , Modelos Animais , Proteína ORAI2/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
13.
Nat Methods ; 16(7): 649-657, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209382

RESUMO

Calcium imaging with genetically encoded calcium indicators (GECIs) is routinely used to measure neural activity in intact nervous systems. GECIs are frequently used in one of two different modes: to track activity in large populations of neuronal cell bodies, or to follow dynamics in subcellular compartments such as axons, dendrites and individual synaptic compartments. Despite major advances, calcium imaging is still limited by the biophysical properties of existing GECIs, including affinity, signal-to-noise ratio, rise and decay kinetics and dynamic range. Using structure-guided mutagenesis and neuron-based screening, we optimized the green fluorescent protein-based GECI GCaMP6 for different modes of in vivo imaging. The resulting jGCaMP7 sensors provide improved detection of individual spikes (jGCaMP7s,f), imaging in neurites and neuropil (jGCaMP7b), and may allow tracking larger populations of neurons using two-photon (jGCaMP7s,f) or wide-field (jGCaMP7c) imaging.


Assuntos
Cálcio/metabolismo , Neurônios/metabolismo , Animais , Células Cultivadas , Drosophila , Feminino , Proteínas de Fluorescência Verde , Camundongos , Junção Neuromuscular/diagnóstico por imagem , Ratos , Córtex Visual/metabolismo
14.
Cell Rep ; 27(5): 1319-1326.e5, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31042460

RESUMO

The cerebral cortex is organized in vertical columns that contain neurons with similar functions. The cellular micro-architecture of such columns is an essential determinant of brain dynamics and cortical information processing. However, a detailed understanding of columns is incomplete, even in the best studied cortical regions, and mostly restricted to the upper cortical layers. Here, we developed a two-photon Ca2+-imaging-based method for the serial functional mapping of all pyramidal layers of the mouse primary auditory cortex at single-neuron resolution in individual animals. We demonstrate that the best frequency-responsive neurons are organized in all-layers-crossing narrow columns, with fuzzy boundaries and a bandwidth of about one octave. This micro-architecture is, in many ways, different from what has been reported before, indicating the region and stimulus specificity of functional cortical columns in vivo.


Assuntos
Córtex Auditivo/citologia , Sinalização do Cálcio , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neurônios/metabolismo , Animais , Córtex Auditivo/metabolismo , Feminino , Limite de Detecção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica/normas , Neurônios/citologia
15.
JCI Insight ; 4(9)2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31045576

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are dually gated channels that are operated by voltage and by neurotransmitters via the cAMP system. cAMP-dependent HCN regulation has been proposed to play a key role in regulating circuit behavior in the thalamus. By analyzing a knockin mouse model (HCN2EA), in which binding of cAMP to HCN2 was abolished by 2 amino acid exchanges (R591E, T592A), we found that cAMP gating of HCN2 is essential for regulating the transition between the burst and tonic modes of firing in thalamic dorsal-lateral geniculate (dLGN) and ventrobasal (VB) nuclei. HCN2EA mice display impaired visual learning, generalized seizures of thalamic origin, and altered NREM sleep properties. VB-specific deletion of HCN2, but not of HCN4, also induced these generalized seizures of the absence type, corroborating a key role of HCN2 in this particular nucleus for controlling consciousness. Together, our data define distinct pathological phenotypes resulting from the loss of cAMP-mediated gating of a neuronal HCN channel.


Assuntos
AMP Cíclico/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Convulsões/metabolismo , Animais , Comportamento Animal , Epilepsia/metabolismo , Células HEK293 , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Neurônios/metabolismo , Canais de Potássio , Tálamo/metabolismo , Transcriptoma
16.
Methods Mol Biol ; 1929: 15-26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30710264

RESUMO

Two-photon calcium imaging became in recent years a very popular method for the functional analysis of neural cell populations on a single-cell level in anesthetized or awake behaving animals. Scientific insights about single-cell processing of sensory information but also analyses of higher cognitive functions in healthy or diseased states became thereby feasible. However, two-photon imaging is generally limited to depths of a few hundred micrometers when recording from densely labeled cell populations. Therefore, such recordings are often restricted to the superficial layers 1-3 of the mouse cortex, whereas the deep cell layers 4-6 are hardly accessible with standard two-photon imaging. Here, we provide a protocol for deep two-photon calcium imaging, which allows imaging of neuronal circuits with single-cell resolution in all cortical layers of the mouse primary cortex. This technique can be readily applied to other species. The method includes a reduction of excitation light scattering by the use of a red-shifted calcium indicator and the minimization of background fluorescence by visually guided local application of the fluorescent dye. The technique is similar to previously published protocols for in vivo two-photon calcium imaging with synthetic calcium dyes (Stosiek et al. Proc Natl Acad Sci U S A 100:7319-7324, 2003). Hence, only minor changes of a generic two-photon setup and some adaptations of the experimental procedures are required.


Assuntos
Cálcio/análise , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Neurônios/metabolismo , Córtex Visual/citologia , Animais , Sinalização do Cálcio , Corantes Fluorescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Córtex Visual/metabolismo
17.
Annu Rev Neurosci ; 41: 277-297, 2018 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-29986165

RESUMO

A major mystery of many types of neurological and psychiatric disorders, such as Alzheimer's disease (AD), remains the underlying, disease-specific neuronal damage. Because of the strong interconnectivity of neurons in the brain, neuronal dysfunction necessarily disrupts neuronal circuits. In this article, we review evidence for the disruption of large-scale networks from imaging studies of humans and relate it to studies of cellular dysfunction in mouse models of AD. The emerging picture is that some forms of early network dysfunctions can be explained by excessively increased levels of neuronal activity. The notion of such neuronal hyperactivity receives strong support from in vivo and in vitro cellular imaging and electrophysiological recordings in the mouse, which provide mechanistic insights underlying the change in neuronal excitability. Overall, some key aspects of AD-related neuronal dysfunctions in humans and mice are strikingly similar and support the continuation of such a translational strategy.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Rede Nervosa/fisiopatologia , Vias Neurais/fisiopatologia , Animais , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Humanos , Camundongos , Rede Nervosa/patologia , Vias Neurais/patologia
18.
Neuron ; 99(1): 47-55.e4, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29909996

RESUMO

The ability to remember and to navigate to safe places is necessary for survival. Place navigation is known to involve medial entorhinal cortex (MEC)-hippocampal connections. However, learning-dependent changes in neuronal activity in the distinct circuits remain unknown. Here, by using optic fiber photometry in freely behaving mice, we discovered the experience-dependent induction of a persistent-task-associated (PTA) activity. This PTA activity critically depends on learned visual cues and builds up selectively in the MEC layer II-dentate gyrus, but not in the MEC layer III-CA1 pathway, and its optogenetic suppression disrupts navigation to the target location. The findings suggest that the visual system, the MEC layer II, and the dentate gyrus are essential hubs of a memory circuit for visually guided navigation.


Assuntos
Região CA1 Hipocampal/fisiologia , Giro Denteado/fisiologia , Córtex Entorrinal/fisiologia , Memória Espacial/fisiologia , Navegação Espacial , Animais , Sinais (Psicologia) , Hipocampo/fisiologia , Memória/fisiologia , Camundongos , Inibição Neural , Optogenética , Fotometria , Percepção Visual
19.
Proc Natl Acad Sci U S A ; 114(32): 8631-8636, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28739891

RESUMO

Amyloid-ß (Aß) is thought to play an essential pathogenic role in Alzheimer´s disease (AD). A key enzyme involved in the generation of Aß is the ß-secretase BACE, for which powerful inhibitors have been developed and are currently in use in human clinical trials. However, although BACE inhibition can reduce cerebral Aß levels, whether it also can ameliorate neural circuit and memory impairments remains unclear. Using histochemistry, in vivo Ca2+ imaging, and behavioral analyses in a mouse model of AD, we demonstrate that along with reducing prefibrillary Aß surrounding plaques, the inhibition of BACE activity can rescue neuronal hyperactivity, impaired long-range circuit function, and memory defects. The functional neuronal impairments reappeared after infusion of soluble Aß, mechanistically linking Aß pathology to neuronal and cognitive dysfunction. These data highlight the potential benefits of BACE inhibition for the effective treatment of a wide range of AD-like pathophysiological and cognitive impairments.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Neurônios/metabolismo , Inibidores de Proteases/farmacologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/patologia
20.
Cell Calcium ; 64: 29-35, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28027798

RESUMO

Two-photon laser scanning calcium imaging has emerged as a useful method for the exploration of neural function and structure at the cellular and subcellular level in vivo. The applications range from imaging of subcellular compartments such as dendrites, spines and axonal boutons up to the functional analysis of large neuronal or glial populations. However, the depth penetration is often limited to a few hundred micrometers, corresponding, for example, to the upper cortical layers of the mouse brain. Light scattering and aberrations originating from refractive index inhomogeneties of the tissue are the reasons for these limitations. The depth penetration of two-photon imaging can be enhanced through various approaches, such as the implementation of adaptive optics, the use of three-photon excitation and/or labeling cells with red-shifted genetically encoded fluorescent sensors. However, most of the approaches used so far require the implementation of new instrumentation and/or time consuming staining protocols. Here we present a simple approach that can be readily implemented in combination with standard two-photon microscopes. The method involves an optimized protocol for depth-restricted labeling with the red-shifted fluorescent calcium indicator Cal-590 and benefits from the use of ultra-short laser pulses. The approach allows in vivo functional imaging of neuronal populations with single cell resolution in all six layers of the mouse cortex. We demonstrate that stable recordings in deep cortical layers are not restricted to anesthetized animals but are well feasible in awake, behaving mice. We anticipate that the improved depth penetration will be beneficial for two-photon functional imaging in larger species, such as non-human primates.


Assuntos
Cálcio/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Comportamento Animal , Córtex Cerebral/metabolismo , Corantes/metabolismo , Humanos , Camundongos , Imagem Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...